

A MISSION TO REMOVE MATHS PHOBIA FROM DELICATE MINDS

FORMULAE & KEY POINTS

CLASS 12 MATHEMATICS

CHAPTER 06 / APPLICATIONS OF DERIVATIVES

PRE-REQUISITE KNOWLWDGE FOR THE CHAPTER

To solve the problems in this chapter, students must have the knowledge of the following topics of previous classes:

- (i) Mensuration (Class X)
- (ii) Functions (Class XI)
- (iii) Coordinate Geometry (XI)
- (iv) Polynomials (Class X)
- (v) Solving a cubic equation by factor theorem and solving quadratic equation by factorization / Quadratic Formula (Classes IX & X)

1. RATE OF CHANGE OF QUANTITIES

- (i) $\frac{dy}{dx}$ (or $f'(x)$) represents the rate of change of y with respect to x
- (ii) $\frac{dy}{dx} \Big|_{x=x_0}$ (or $f'(x_0)$) represents the instantaneous rate of change of y with respect to x
at $x = x_0$
- (iii) If two variables x and y are varying with respect to another variable t , i. e.,

if $x = f(t)$ and $y = g(t)$, then by Chain Rule, $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx}$ provided $\frac{dx}{dt} \neq 0$

(iv) Marginal Cost(MC)

Let $C(x)$ be the Total Cost Function, then Marginal Cost is the instantaneous rate of change of total cost at any level of output.

Formula: $MC = \frac{dC}{dx}$

(v) Marginal Revenue(MR)

Let $R(x)$ be the Total Revenue Function, then Marginal Revenue is the the rate of change of total revenue with respect to the number of items sold at an instant

Formula: $MR = \frac{dR}{dx}$

REMARK

For a function $y = f(x)$

- (i) if y increases as x increases, then $\frac{dy}{dx}$ is + ve

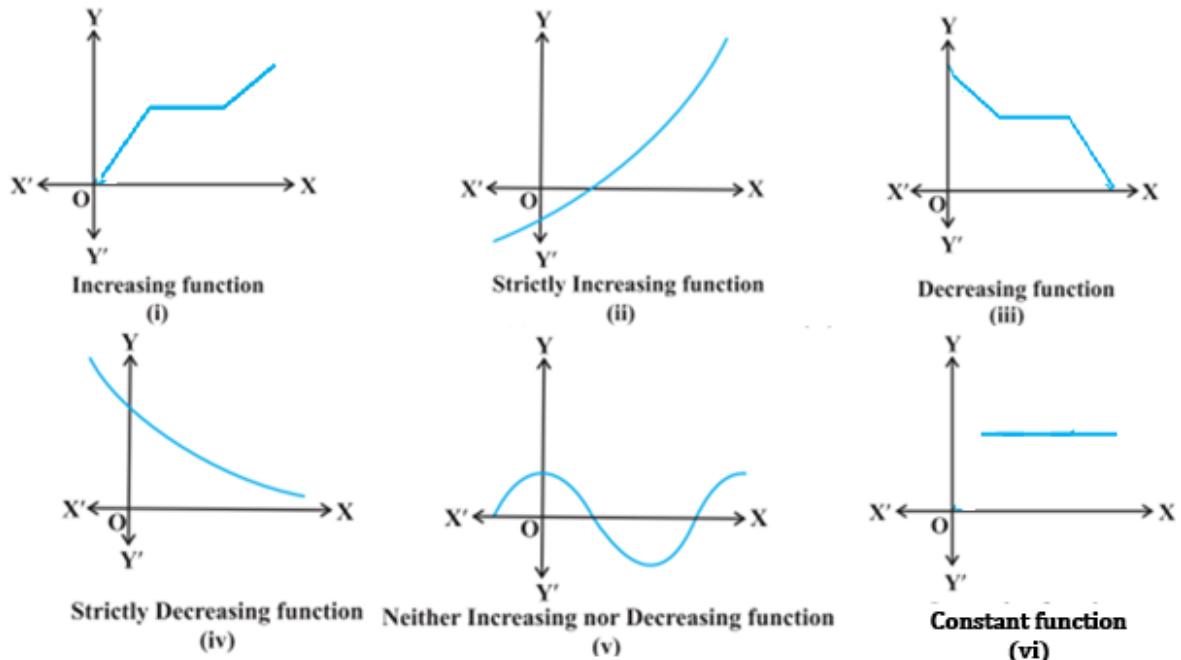
ganitalay.com

ganitalay.mritunjya@gmail.com

[ganitalay](#)

- (ii) if y decreases as x increases, then $\frac{dy}{dx}$ is $-ve$
- (iii) if y does not change as x increases, then $\frac{dy}{dx} = 0$
- (iv) Rate of **change** of y w.r.t. x is -5 cm/sec \Leftrightarrow Rate of **decrease** of y w.r.t. x is 5 cm/sec.

2.1 INCREASING AND DECREASING FUNCTIONS IN AN OPEN INTERVAL I



Let I be an open interval contained in the domain of a real valued function f . Then f is said to be

- (i) **Increasing** on I if $x_1 < x_2$ in $I \Rightarrow f(x_1) \leq f(x_2)$ for all $x_1, x_2 \in I$.
- (ii) **Strictly Increasing** on I if $x_1 < x_2$ in $I \Rightarrow f(x_1) < f(x_2)$ for all $x_1, x_2 \in I$.
- (iii) **Decreasing** on I if $x_1 < x_2$ in $I \Rightarrow f(x_1) \geq f(x_2)$ for all $x_1, x_2 \in I$.
- (iv) **Strictly Decreasing** on I if $x_1 < x_2$ in $I \Rightarrow f(x_1) > f(x_2)$ for all $x_1, x_2 \in I$.
- (v) **Neither Increasing Nor Decreasing** if sometimes $x_1 < x_2$ in $I \Rightarrow f(x_1) \leq f(x_2)$ and For some other time $x_3 < x_4$ in $I \Rightarrow f(x_3) \geq f(x_4)$ or f is a constant function.
- (vi) **A Constant Function** on I if $f(x_1) = f(x_2) = c$, a constant for all $x_1, x_2 \in I$

2.2 INCREASING AND DECREASING FUNCTIONS AT A POINT

Let x_0 be a point in the domain of a real valued function f . Then f is said to be increasing, strictly increasing, decreasing or strictly decreasing at x_0 if there exists an open interval I containing x_0 such that f is increasing, strictly increasing, decreasing or strictly decreasing, respectively, in I .

Thus, a function f is said to be increasing at x_0 if there exists an interval $I = (x_0 - h, x_0 + h)$, $h > 0$ such that for $x_1, x_2 \in I$, $x_1 < x_2$ in $I \Rightarrow f(x_1) \leq f(x_2)$

Similarly, the other cases can be stated.

2.3 FIRST DERIVATIVE TEST FOR INCREASING AND DECREASING FUNCTION

If a function f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) . Then

- (i) f is increasing in $[a, b] \Leftrightarrow f'(x) \geq 0$ for each $x \in (a, b)$
- (ii) f is strictly increasing in $[a, b] \Leftrightarrow f'(x) > 0$ for each $x \in (a, b)$
- (iii) f is decreasing in $[a, b] \Leftrightarrow f'(x) \leq 0$ for each $x \in (a, b)$
- (iv) f is strictly decreasing in $[a, b] \Leftrightarrow f'(x) < 0$ for each $x \in (a, b)$
- (v) f is a constant function in $[a, b] \Leftrightarrow f'(x) = 0$ for each $x \in (a, b)$

Example:

The function $f(x) = \cos x$ is

- (i) Strictly decreasing in $(0, \pi)$.
- (ii) Decreasing in $[0, \pi]$ as f is continuous in $[0, \pi]$
- (iii) Strictly increasing in $(\pi, 2\pi)$
- (iv) Increasing in $[\pi, 2\pi]$ as f is continuous in $[\pi, 2\pi]$
- (v) Neither increasing nor decreasing in $(0, 2\pi)$

REMARKS

If a function f is continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b) and

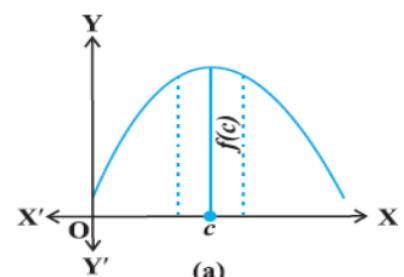
- (i) $f'(x) > 0$ for all x in (a, b) except for a finite number of points where $f'(x) = 0$, then f is strictly increasing in $[a, b]$.
- (ii) $f'(x) < 0$ for all x in (a, b) except for a finite number of points where $f'(x) = 0$, then f is strictly decreasing in $[a, b]$.

3. MAXIMUM VALUE, MINIMUM VALUE & EXTREME VALUE OF A FUNCTION IN AN INTERVAL

Let f be a function defined on an interval I . Then

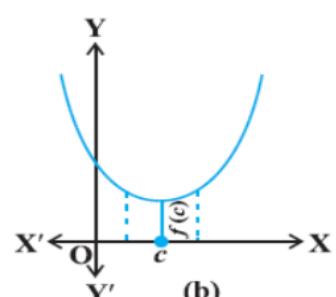
3.1 f is said to have a **maximum value** in I , if there exists a point c in I such that $f(c) > f(x)$, for all $x \in I$.

The number $f(c)$ is called the maximum value of f in I and the point c is called a **point of maximum value** of f in I .



3.2 f is said to have a **minimum value** in I , if there exists a point c in I such that $f(c) < f(x)$, for all $x \in I$.

The number $f(c)$ is called the minimum value of f in I and the point c is called a **point of minimum value** of f in I .

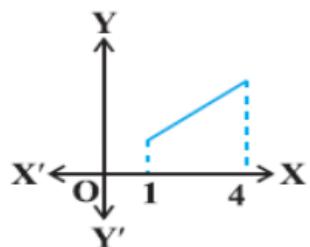


3.3 f is said to have an **extreme value** in I if there exists a point c in I such that $f(c)$ is either a maximum value or a minimum value of f in I .
 The number $f(c)$, in this case, is called an extreme value of f in I and the point c is called an **extreme point**.

4. MONOTONIC FUNCTION

4.1 By a monotonic function f in an interval I , we mean that f is either increasing in I or decreasing in I .

4.2 Every monotonic function assumes its maximum/minimum value at the end points of the domain of definition of the function.



4.3 A more general result is

Every continuous function on a closed interval has a maximum and a minimum value.

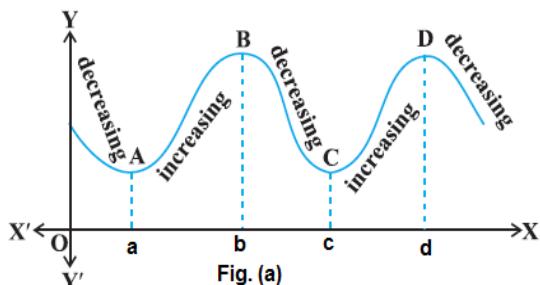
5. NEIGHBOURHOOD(NBD) OF A REAL NUMBER/POINT ON A NUMBER LINE

5.1 Let c be a real number and let h be a positive real number (i.e. $h > 0$), then the Open Interval $(c - h, c + h)$ is called a neighbourhood of the point c , denoted as **nbd**(c).

5.2 The neighbourhood of a point on a real line is an interval, the neighbourhood of a point on a plane is a circle whereas the neighbourhood of a point space is a sphere.

6. TURNING POINTS OF A FUNCTION AND THEIR PROPERTIES

6.1 A point on the graph of a function where the function changes its nature from decreasing to increasing or vice-versa is called a **turning point** of the function.
 For example, in the graph of a function given below, the points A, B, C and D are the turning points of the function.



6.2 REMARKS

- (i) At a turning point, say $x = c$, $f'(x) = 0$
- (ii) In the neighbourhood of a turning point, the graph has either a little hill (points B and D) or a little valley (points A and C).
- (iii) A turning point is either a point of maximum value in its neighbourhood (points B and D) or a point of minimum value in its neighbourhood (points A and C)
- (iv) In the above graph, the points A and C are called the **points of local minimum value** (or **relative minimum value**) and , the points B and D are called the **points of local maximum value** (or **relative maximum value**).

(v) The **local maximum value** and **local minimum value** of the function are referred to as **local maxima** and **local minima**, respectively, of the function.

(vi) For both the functions $\sin x$ and $\cos x$ the minimum value is (-1) and the maximum value is 1 as the range of these functions is $[-1, 1]$.

(vii) For both the functions $f(x) = a \sin x + b \cos x$ and $f(x) = a \sin x - b \cos x$, the minimum value is $(-\sqrt{a^2 + b^2})$ and the maximum value is $\sqrt{a^2 + b^2}$.

(viii) Putting $a = b = 1$ in (vii) we get Thus, the minimum and the maximum values of both the functions $f(x) = a \sin x \pm b \cos x$ as $(-\sqrt{2})$ and $\sqrt{2}$ respectively.

(ix) For both the functions $\tan x$ and $\cot x$ the minimum value is $(-\infty)$ and the maximum value is (∞) as the range of these functions is \mathbb{R} .

(x) For both the functions $\sec x$ and $\operatorname{cosec} x$ the minimum value is $(-\infty)$ and the maximum value is (∞) as the range of these functions is $(-\infty - 1] \cup [1, \infty)$.

(xi) For both the functions $f(x) = x^2$ and $f(x) = |x|$, the minimum value is 0 and the maximum value is ∞ as the range of these functions is $[0, \infty)$.

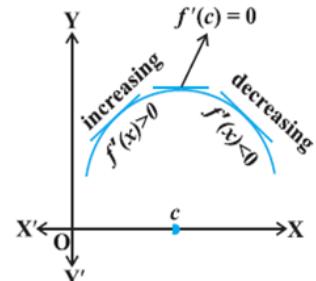
(xii) For the functions $f(x) = x^3$ the minimum value is $(-\infty)$ and the maximum value is (∞) as the range of these functions is \mathbb{R}

7. LOCAL MAXIMA AND LOCAL MINIMA

Let f be a real valued function and let c be an interior point in the domain of f . Then

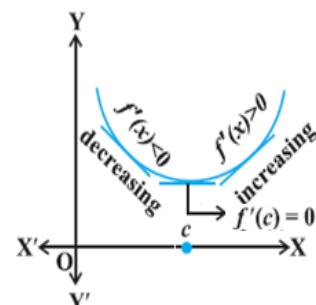
7.1 c is called a **point of local maxima** if there is an $h > 0$ such that $f(c) \geq f(x)$, for all x in $(c - h, c + h)$

The value $f(c)$ is called the **local maximum value** of f .



7.2 c is called a **point of local minima** if there is an $h > 0$ such that $f(c) \leq f(x)$, for all x in $(c - h, c + h)$

The value $f(c)$ is called the **local minimum value** of f .



REMARKS

(i) Geometrically, if $x = c$ is a point of local maxima of f , then the function f is increasing (i.e., $f'(x) > 0$) in the interval $(c - h, c)$ and decreasing (i.e., $f'(x) < 0$) in the interval $(c, c + h)$.
 \Rightarrow If $x = c$ is a point of local maxima then $f'(c)$ must be zero. But the converse is not true.

(ii) Geometrically, if $x = c$ is a point of local minima of f , then the function f is decreasing (i.e., $f'(x) < 0$) in the interval $(c - h, c)$ and increasing (i.e., $f'(x) > 0$) in the interval $(c, c + h)$.
 ⇒ If $x = c$ is a point of local minima then $f'(c)$ must be zero. But the converse is not true.

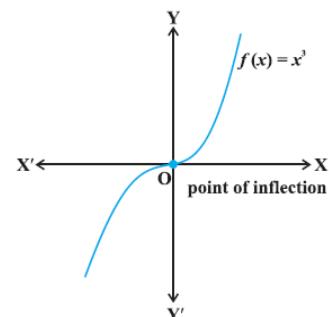
7.3 THEOREM : CONDITION FOR A CRITICAL POINT

Let f be a function defined on an open interval I . Suppose $c \in I$ be any point. If f has a local maxima or a local minima at $x = c$, then, either $f'(c) = 0$ OR f is not differentiable at c

REMARKS

(i) The converse of above theorem need not be true, that is, a point at which the derivative vanishes need not be a point of local maxima or local minima.

For example, if $f(x) = x^3$, then $f'(x) = 3x^2$ and so $f(0) = 0$. But 0 is neither a point of local maxima nor a point of local minima.



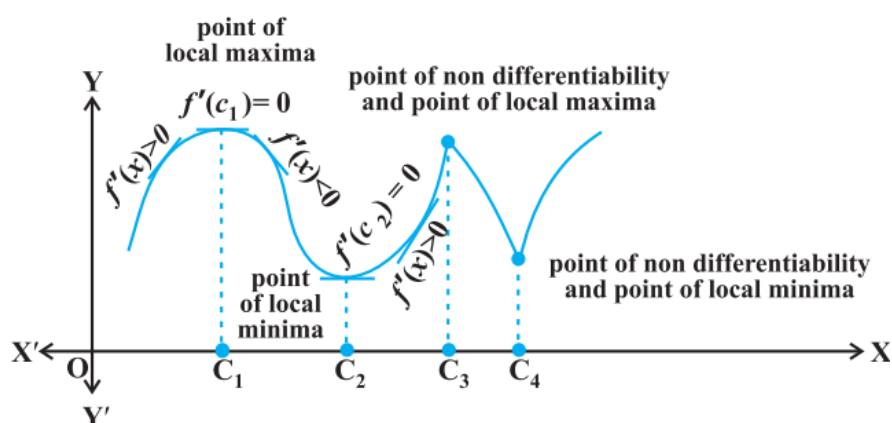
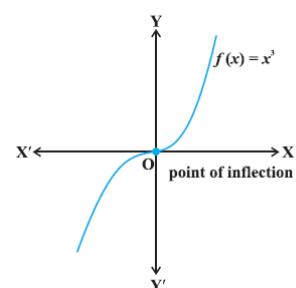
(ii) CRITICAL POINTS OF A FUNCTION

A point c in the domain of a function f at which either $f'(c) = 0$ or f is not differentiable is called a **critical point** of f . Note that if f is continuous at c and $f'(c) = 0$, then there exists an $h > 0$ such that f is differentiable in the interval $(c - h, c + h)$.

(ii) POINT OF INFLECTION OF A FUNCTION

Let f be a function defined on an open interval I . Let f be continuous at a critical point c in I . Then, if $f'(x)$ does not change sign as x increases through c , then c is neither a point of local maxima nor a point of local minima. Such a point is called **point of inflection**. Thus, in the above example, $x = 0$ is a point of inflection of the function f .

8. FIRST DERIVATIVE TEST FOR FINDING LOCAL MAXIMA AND LOCAL MINIMA OF A FUNCTION



Let f be a function defined on an open interval I . Let f be continuous at a critical point c in I . Then

- (i) If $f'(x)$ changes sign from positive to negative as x increases through c , i.e., if $f'(x) > 0$ at every point sufficiently close to and to the left of c , and $f'(x) < 0$ at every point sufficiently close to and to the right of c , then c is a **point of local maxima**.
- (ii) If $f'(x)$ changes sign from negative to positive as x increases through c , i.e., if $f'(x) < 0$ at every point sufficiently close to and to the left of c , and $f'(x) > 0$ at every point sufficiently close to and to the right of c , then c is a **point of local minima**.
- (iii) If $f'(x)$ does not change sign as x increases through c , then c is neither a point of local maxima nor a point of local minima. In fact, such a point is called **point of inflection**.

REMARKS

- (i) If c is a point of local maxima of f , then $f(c)$ is a local maximum value of f .
- (ii) If c is a point of local minima of f , then $f(c)$ is a local minimum value of f

9. SECOND DERIVATIVE TEST FOR FINDING LOCAL MAXIMA AND LOCAL MINIMA OF A FUNCTION

Let f be a function defined on an interval I and $c \in I$. Let f be twice differentiable at c . Then

- (i) $x = c$ is a point of local maxima if $f'(c) = 0$ and $f''(c) < 0$
In this case, $f(c)$ is local maximum value of f .
- (ii) $x = c$ is a point of local minima if $f'(c) = 0$ and $f''(c) > 0$
In this case, $f(c)$ is local minimum value of f .
- (iii) The test fails if $f'(c) = 0$ and $f''(c) = 0$.
In this case, we go back to the first derivative test and find whether c is a point of local maxima, local minima or a point of inflexion

10. ABSOLUTE MAXIMUM VALUE (GLOBAL MAXIMUM OR GREATEST VALUE) AND ABSOLUTE MINIMUM VALUE (GLOBAL MINIMUM OR LEAST VALUE) OF A FUNCTION IN A CLOSED INTERVAL

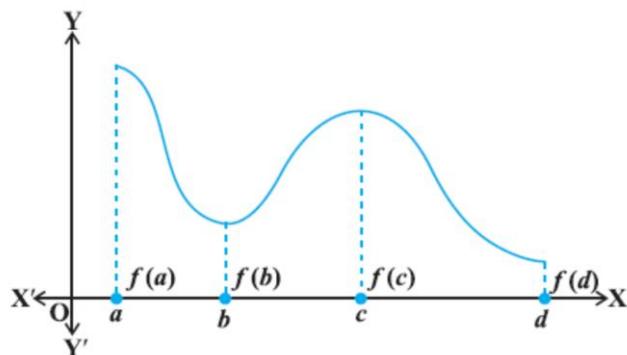
10.1 MAXIMUM OR ABSOLUTE MAXIMUM OF A FUNCTION

A function f defined over $[a, b]$ is said to have maximum (or absolute maximum) at $x = c, c \in [a, b]$, if $f(x) \leq f(c)$ for all $x \in [a, b]$.

10.2 MINIMUM OR ABSOLUTE MINIMUM OF A FUNCTION

A function $f(x)$ defined over $[a, b]$ is said to have a minimum [or absolute minimum] at $x = d$, if $f(x) \geq f(d)$ for all $x \in [a, b]$.

10.3



- (i) Consider the graph given in the Fig of a continuous function defined on a closed interval $[a, b]$. Observe that the function f has a local minima at $x = b$ and local minimum value is $f(b)$. The function also has a local maxima at $x = c$ and local maximum value is $f(c)$.
- (ii) Also from the graph, it is evident that f has absolute maximum value $f(a)$ and absolute minimum value $f(d)$. Further note that the absolute maximum (minimum) value of f is different from local maximum (minimum) value of f .
- (iii) Let f be a continuous function on an interval $I = [a, b]$. Then f has the absolute maximum value and f attains it at least once in I . Also, f has the absolute minimum value and attains it at least once in I .
- (iv) Let f be a differentiable function on a closed interval I and let c be any interior point of I . Then
 - (a) $f'(c) = 0$ if f attains its absolute maximum value at c .
 - (b) $f'(c) = 0$ if f attains its absolute minimum value at c .

10.4 WORKING RULE FOR FINDING ABSOLUTE MAXIMA AND OR ABSOLUTE MINIMA

Step 1: Find all the **critical points** of f in the given interval and the **end points** of the given closed interval.

Step 2: At all these points obtained in Step 1, calculate the values of f .

Step 3: Identify the maximum and minimum values of f out of the values calculated in Step 2.

The maximum value will be the absolute maximum value of f and the minimum value will be the absolute minimum value of f

