

A MISSION TO REMOVE MATHS PHOBIA FROM DELICATE MINDS

FORMULAE & KEY POINTS

EXPONENTIAL AND LOGARITHMIC FUNCTIONS

APPENDIX TO CH. 5. CONTINUITY AND DIFFERENTIABILITY

- 1. EXPONENTIAL FUNCTION**
- 2. LOGARITHMIC FUNCTION**

1. EXPONENTIAL FUNCTION

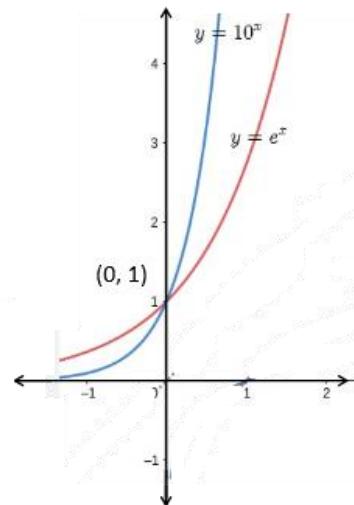
1.(i) Definition

The exponential function with positive base $a > 1$ is the function is defined as

$$y = f(x) = a^x$$

(ii) Domain = \mathbb{R}

(iii) Range = \mathbb{R}^+ or $(0, \infty)$



(iv) Graph of Exponential Function

REMARKS

- (i) The point $(0, 1)$ is always on the graph of the exponential function (as at $x = 0, y = a^0 = 1$ for any real $a > 1$).
- (ii) Exponential function is ever increasing
⇒ as x increases (or decreases), y also increases (or decreases)
⇒ as we move from left to right, the graph rises above
- (iii) For very large negative values of x , the exponential function is very close to 0. Thus, in the second quadrant, the graph approaches x -axis (but never meets it). Mathematically, we say – the graph is **asymptotic** to x -axis
- (iv) **Common Exponential Function:** Exponential function with base 10 is called the common exponential function.

ganitalay.com

ganitalay.mritunjya@gmail.com

ganitalay

(v) **Natural Exponential Function:** Exponential function with base e is called the natural exponential function.

Here, e is called Euler's constant defined as

$$e = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots = 2.718 \text{ (approx.)}$$

(vi) $\frac{d}{dx}(a^x) = a^x \cdot \log_e a$

In particular, replacing a by e we get, $\frac{d}{dx}(e^x) = e^x$

2. LOGARITHMIC FUNCTION

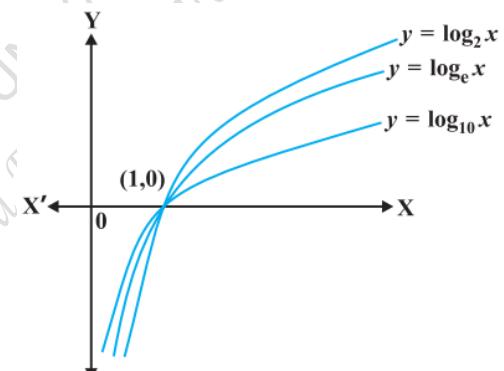
1.(i) **Definition:**

Let $a > 1$ be a real number. Then we say logarithm of x to the base a is y , if $a^y = x$.

Symbolically, $y = f(x) = \log_a x$ if $a^y = x$

(ii) **Domain** = \mathbb{R}^+ or $(0, \infty)$

(iii) **Range** = \mathbb{R}



(iv) **Graph of Logarithmic Function**

REMARKS

(i) The point $(1, 0)$ is always on the graph of the logarithmic function (as at $x = 1, y = 0$ for any real $a > 1$).

(ii) Logarithmic function is ever increasing
 \Leftrightarrow as x increases (or decreases), y also increases (or decreases)
 \Leftrightarrow as we move from left to right, the graph rises above

(iii) For x very near to zero, the value of $\log x$ can be made lesser than any given real number, the exponential function is very close to 0. Thus, in the fourth quadrant, the graph approaches y -axis (but never meets it). Mathematically, we say – the graph is **asymptotic** to y -axis

(iv) **Common Logarithmic Function:** Logarithmic function with base 10 is called the common logarithmic function.

(v) **Natural Logarithmic Function:** Logarithmic function with base e is called the natural logarithmic function.

(vi) Logarithm with base e is written as $\ln x$

(vii) If no base is mentioned for a logarithmic function, it is assumed to be e ,

$$\text{i.e. } \log x = \log_e x$$

(viii) For any base a , we have the following results:

- (a) As $a^0 = 1 \Rightarrow \log_a 1 = 0$
- (b) As $a^1 = a \Rightarrow \log_a a = 1$
- (c) As, $a^x = a^x \Rightarrow \log_a a^x = x$
- (d) As, $\log_a x = \log_a x \Rightarrow a^{\log_a x} = x$

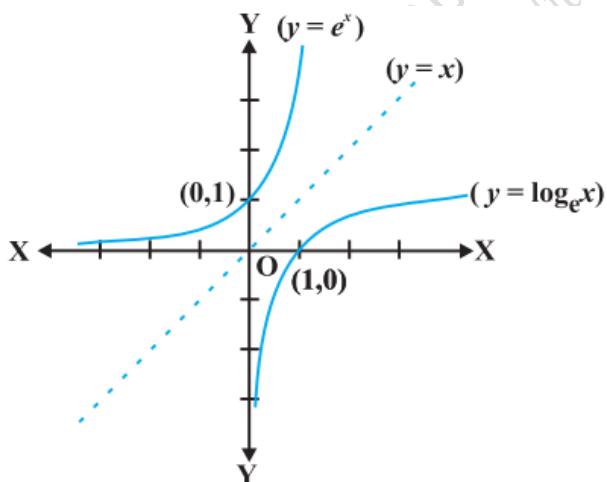
(ix) In view of (vii), replacing a by e in (viii) we get the following results:

$$(a) \log 1 = 0 \quad (b) \log e = 1 \quad (c) \log e^x = x \quad (d) e^{\log x} = x \quad (e) e^{a \log x} = x^a$$

(x) Exponential and Logarithmic functions are inverse of each other.

$$\text{i.e. } y = a^x \Leftrightarrow x = \log_a y$$

Thus, Exponential and Logarithmic functions are mirror images of each other with respect to the line $y = x$ as shown in the graph given below.



(xi) $\frac{d}{dx} (\log_a x) = \frac{1}{x \log a}$

In particular, replacing a by e we get, $\frac{d}{dx} (\log_e x) = \frac{1}{x}$

PROPERTIES OF LOGARITHMIC FUNCTIONS

For any base a , the following laws hold:

(i) $\log(m \times n) = \log m + \log n$ **(Product Law)**

Example

$$\log[(x+1)(x+2)(x-3)] = \log(x+1) + \log(x+2) + \log(x-3)$$

(ii) $\log\left(\frac{m}{n}\right) = \log m - \log n$ **(Quotient Law)**

Example

$$\log\left(\frac{x}{\cos x}\right) = \log x - \log \cos x$$

(iii) $\log m^n = n \log m$ (**Law of Exponent**)

Example 1

$$\log y^x = x \log y$$

Example 2

Using the above laws we can write $y = \sqrt{\frac{(x-2)^3(x+3)}{(2x-5)(x+4)(3x+7)}}$ as

$$\log y = \frac{1}{2} [3 \log(x-2) + \log(x+3) - \log(2x-5) - \log(x+4) - \log(3x+7)]$$

(iv) $\log_a b = \frac{\log_c b}{\log_c a}$, where $c > 1$ (**Change of Base Law**)

REMARK

Replacing b by a above, we get

$$\log_a b = \frac{1}{\log_b a} \Leftrightarrow (\log_a b) \times (\log_b a) = 1 \quad (\textbf{Reciprocal Law})$$

ganitalay.com

ganitalay.mritunjya@gmail.com

ganitalay